ϵ

KCM-XJ8M 系列多路智能温度调节仪使用说明书

(使用此产品前,请仔细阅读说明书,以便正确使用,并请妥善保存,以便随时参考)

一、概述:

KCM-XJ8M 型仪表是八路控制仪,可以同时配接 8 路传感器,独立的自整定模式和 PID 参数,同时控制 8 路控制输出,整机控制性能精确可靠。

二、技术指标:

1、输入类型 (可选):

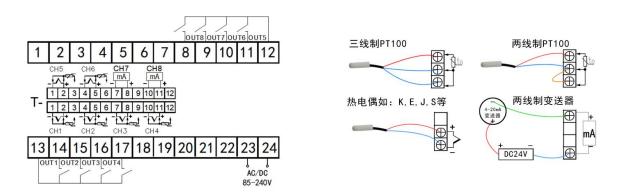
规格 1: CU50 、Pt100 、K 、E 、J 、T、S 自由切换;

规格 2: 0~5V(-1999-9999)或 4~20mA(-1999-9999)固定一种

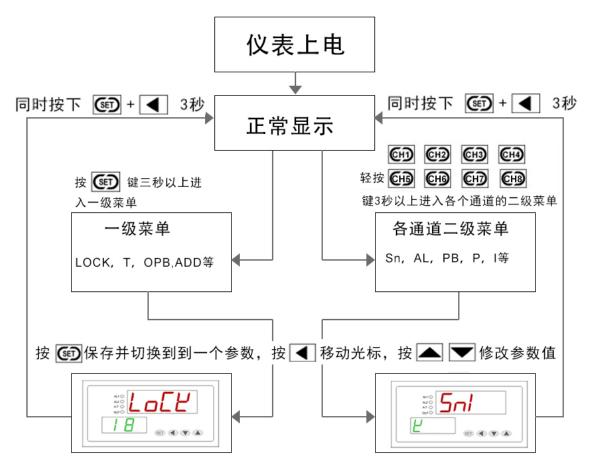
规格 3: NTC 10K3950 、NTC 100K3950、 KTY84-130 固定一种

NTC 需硬件支持

- 2、控制方式:二位式控制、PID控制
- 3、连续 PID 调节输出:继电器、调节固态继电器任选 1
- 4、测量精度: ±0.5%F S±1字,
- 5、工作电源: AC85~242V 50/60Hz 功耗: 小于 4W
- 6、工作环境: 0~50℃,相对湿度≤85%RH,无腐蚀性及无强电磁辐射场合


三、面板说明:

- 1. ALM1 指示灯: 当此指示灯亮时, 仪表对应第1路报警继电器有输出。
- 2. 0UT4 指示灯: 当此指示灯亮时, 仪表对应第 4 路主控有输出。
- 3. 通道切换键: 在仪表正常显示状态 按此类键可进入相应通道参数设定 菜单。
- 5. 数字增加键:在参数修改、给定值修改或手动调节状态下可实现数字的增加
- 6. 数字减小键: 在参数修改、给定 值修改或手动调节状态下可实现数 字的减小。



- 7. 移位键: 在修改参数状态下按此键可实现修改数字的位置移动。
- 8. 功能键:仪表正常显示状态按键3秒可进入一级参数修改状态;在参数修改状态,轻按此键可保存本条参数并切换到下一条菜单直到退出修改状态。

四、仪表接线:

五、基本设置及操作:

1、一级菜单设置

按功能键(SET 键)3 秒,进入一级菜单,此时'第1 路显示窗'和'第2 路显示窗'分别显示参数符号和参数值,可分别按 ◀(移位键)、 ▲、 ▼三键来更改参数值,修改完成后按 SET 键保存进入下一个参数;同样方法修改其它参数。

2、二级菜单设置

各通道参数分别按 CH1、CH2、CH3、CH4 、CH5、CH6、CH7、CH8 三秒进入相对应的通道菜单项,可按▼、

▲、▼三键来更改参数值修改完成后按 SET 键保存进入下一个参数;各参数见下表:

ID	提示符	名	称	设定范围	说	明		出厂值
	一级菜单							

0	Loce	密码锁	0~50	为 18 时,允许修改所有参数;为 1 时,只允许修改设定值(SP)和回差(HY);禁止修改其它参数。	18
1	Ł	控制周期	0~120	设定 PID 控制时的动作周期	10
2	οРЬ	通讯方式	0~1	0. 无副输出; 1. RS485 通讯/RS232	0
3	Rddr	通讯地址	1~64	1~64 仪表在集中控制系统中的站号	
4	bAud	通讯波特率	0~3	0: 1200; 1: 2400; 2: 4800; 3: 9600	9600
	1	(1~2 路每路都	有以下参数,比如	输入规格第一路显示为: 5n! 则第二路显示为: 5n2)	
5	Sn	输入规格		参考表 5-1.2	随机
6	ALP	报警定义	0~6	 无报警; 上限报警 下限报警; 上偏差报警 下偏差报警; 区间外报警 区间内报警 温差报警 	1
7	50	N 通道设定值	范围由 P-SL、	每一通道控制点温度设定参数	随机
8	RL	报警设定值	P-SH 决定	由 AL-P 参数决定报警方式 当 AL-P=0 时不显示此参数	随机
9	5[误差修正值	±20.0	传感器的误差修正值	0
10	Р	比例系数	0~200.0	比例带决定了系统比例增益的大小, P 越大, 比例的作用 越小,过冲越小, 但太小会增加升温时间 P=0, 即为二位式控制状态, 参看表 5-2	15.0
11	1	积分时间	0~3000	设定积分时间,以解除比例控制所发生之残余偏差,太大会延缓系统达到平衡的时间,太小会产生波动	240
12	d	微分时间	0∼200S	设定微分时间,以防止输出的波动,提高控制的稳定性	30
13	RE	自整定参数	0~1	0: 关闭自整定 1: 开启自整定	0
14	HY	主控回差	0.1~50.0	只有二位式控制时才有意义	1.0
15	EoL	双向功能	0~1	0: 加热或加湿 1: 制冷或除湿	0
16	dР	小数点位置	0~1	0: 无小数点; 1: 有小数点	0
17	PSH	量程上限	满量程	当仪表为热电偶或热电阻输入时,显示上限、显示下限决定了仪表的设定值、报警值的设置范围,但不影响显示范围。	随机
18	P5 L	量程下限	满量程	当仪表为电压、电流输入时,其显示上限、显示下限决定了仪表的显示范围,其值可由用户自由决定。	随机

表 5-1.2

输入信号		支持的传感器类型							
	Cu50(£ u 50)		Pt100(PŁ 2)						
油点化成品	–50.0∼150.0°C		–199.9∼600.0℃						
温度传感器	K(∠ ′) -30.0∼1300℃	E(<i>E</i>) -30.0∼700.0℃	J (ૐ)-30.0∼900.0℃						
	T(仁) -199.9∼400.0℃	S(5) -30∼1600°C							
模拟量信号	0~5V/0~10mA(□_5u)	1~5V/4~20mA(/_5 <i>u</i>)							
12.20至11.7	模拟量输入要根据变送器程量设定对应 PSH PSL								

表 5-2

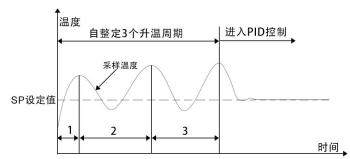
主控输出上下限设定(OUT 为无源开关触点)						
输出条件	基本参数	OUT 断开	0UT 吸合			
加热: 低于设定值有输出	P =0; [al =0;	测量值 ≥ 5P + H 5	测量值 ≤ 5P - H5			

制冷: 高于设定值有输出	Р	=0; <i>CoL</i>	=1	测量值≤ 5/	Р — НУ	测量值≥ 5P + HY
参数参照表 5-1 7:	SP ,	10: <i>P</i>	, 14: <i>Н</i> У	, 15: <i>□</i> L	,OUT 见仪表	侧面接线图

例 1 测量值低于设定值输出: 测量值低于 90 时 0UT 继电器输出, 测量值高于 100 时 0UT 继电器关断, 参数设定为: SP=95, HY=5, COL=0, P=0。

例 2 测量值高于设定值输出: 测量值高于 100 时 0UT 继电器输出, 测量值低于 90 时 0UT 继电器关断, 参数设定为: SP=95, HY=5, COL=1, P=0。

PS 上下限计算公式: <u>(上限设定值-下限设定值)/2</u>=HY , <u>(上限设定值+下限设定值)/2</u>=SP


六、自整定操作:

仪表首次在系统上使用,或者环境发生变化,发现仪表控制性能变差,则需要对仪表的某些参数如 P、I、D 等数据进行整定,省去过去由人工逐渐摸索调整,且难以达到理想效果的繁琐工作,具体时间根据工况长短不一,以温度控制为例,方法如下:

正确连接好控制设备如:加热板,和温度传感器如:PT100。保证仪表可以正常控制加热设备,并可采集显示被加热对象的实时温度。

进入二级菜单,首先设置好设定值 SP+N,再将回差 Hy+N设为 0.5~1 左右,最后将 AT+N 参数值设置为 1,仪表进入自整定状态。整个周期估计在 20-60 分钟不等,具体由控制设备升降温度速率决定。

自整定过程中: N 通道上 AT+N 字符和测量值 交替显示,此时仪表为位式控制,全程无需人工干

预。经过三次自动上下振荡之后,仪表确定出新的 P、I、D 参数并自动保存。N 通道上 AT+N 字符消失,AT+N 参数值自动变为 0,仪表复位进入最佳 PID 控制状态。

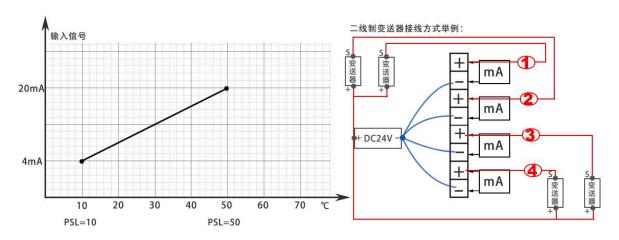
- 注: ①仪表整定时中途断电,因仪表有记忆功能,下次上电会重新开始自整定。
 - ②自整定中,如需要人为退出,将自整定参数 AT 设置为 0 即可退出,但整定结果无效。
 - ③为达到自整定最佳效果,建议四个通道分时段自整定。

七、报警说明(选配功能):

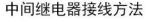
报警方式说明:以第一通道报警设定为例							
报警方式	报警参数	报警开启		报警取消			
1:上限报警	RLP=1	PV1 <i>≥RLI</i>		PV1 <ali hyi<="" td="" —=""></ali>			
2:下限报警	RLP=2	PV1 <i>≤RLI</i>		PV1>ALI + HYI			
3:正偏差报警	ALP=3	PV1≥ <i>5Pl</i> +	RLI	PV1< 5PI + ALI - HYI			
4:负偏差报警	RLP=4	PV1≤ <i>5Pl</i> -	RLI	PV1> 5PI — ALI + HYI			
5:区间外报警	AL <i>P</i> =5	报警开启 PV1≤ 5PI - PL		RLI 或 PV1≥ 5PI +ALI			
3:区间外报言	HLP=5	报警取消	报警取消				
6:区间内报警	6:区间内报警 <i>RLP</i> =6		5PI — RLI ≤	PV1≤ 5PI + ALI			
0.区间内报言	nLr-0	报警取消 PV1< SPI — ALI — HYI 或 PV1> SPI + ALI		LI — HYI 或 PV1> 5PI + RLI + HYI			
PV1 为第 1 路和, 参数参照表 5-1 10: 5PI , 11: RLI , 16: HYI , 2: RLP							

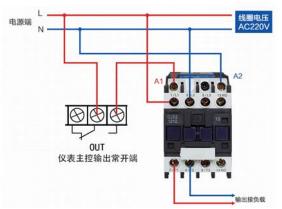
八、故障分析及排除:

表8-1 常见故障处理

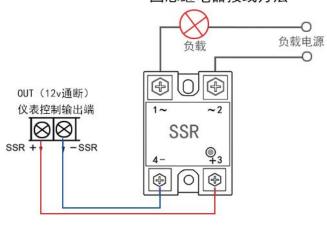

故障现象	原因分析	处理措施		
信号显示与实际不符	1、传感器型号不匹配	1、检查传感器类型与仪表内部输入类型		
(显示'Ⅲ'或'LL')	2、信号接线错误	参数		
		2、检查信号线		

附 1: 仪表参数提示符字母与英文字母对照表:


A	В	С	D	Е	F	G	Н	I	J	K	L	M
R	Ь	Ĺ	В	Ε	F	[H	1	3	5	L	ō
N	0	P	Q	R	S	T	U	Y				
n	0	P	9	٢	5	Ł	U	3				


附 2: 传感器的参数设定:

以下为4-20mA信号输入时仪表参数设定图解,参数PSH、 PSL见"表5-1序号17、18":



附 3: 仪表控制输出接线方式:

固态继电器接线方法

附 4: 仪表与上位机基于 Modbus-RTU 协议通讯 (选配功能):

1、接口规格

为与 PC 机或 PLC 联机以集中监测或控制仪表,仪表提供 RS485 或 RS232 通讯接口,光电隔离,最多能接 255 台仪表。

2、通讯协议

- (1)通讯波特率为1200、2400、4800、9600四档可调,数据格式为1个起始位、8个数据位,1个停止位,无校验位。
- (2) 向仪表读取一个寄存器里的数值。一应一答格式具体如下:

第1步: 主机向仪表发读某寄存器指令:

仪表地址	功能代码(固定 03)	寄存器地址	寄存器个数(固定 0001)	CRC16				
主机向仪表发送读指令: 010310010001D10A								
指令解释:	指令解释: 01(仪表地址)03(功能代码)1001(仪表测量值寄存器地址)0001(固定0001)D10A(CRC校验CRC							
	算法子程序见附 5.5CRC 校验算法子程序							

第2步: 仪表向主机返回相应寄存器数据:

仪表地址	功能代码	返回字节数(2个字节)	参数值	CRC16				
仪表向主机返回数据指令: 0103027FFFD834								
指令解释:	01(仪表地址)03(功能代码)02(返回 2 个字节的参数值)7FFF(返回的参数值)D834(CRC 校验)							
	7FFF 转换成 10 进制为 32767							

(3) 向仪表第一路写入设定值 126

仪表地址	功能代码(固定 06)	寄存器地址(00xx)	参数值	CRC16				
主机向仪表发送读指令: 0106000A04ECAA85								
指令解释:	01 (仪表地址) 06 (功能代码) 000A(设定值地址)04EC (参数值) AA85 (CRC 校验)							
	注意 04EC 转换成 10 进制是 1260, 所有带小数点参数都要放大 10 倍, 如 12.5 设定时要 125							

3、仪表各种寄存器地址列表:(请注意8路表相当于两个4路表,所以一个表有两个站)

名称	是否有小数点	寄存器绝对地址	保持寄存器地址(西门子 PLC)		
测量值(PV)	YES	1001H~1004H	44098~44101		
主控输出	NO	1101H~1104H	44354~44357		
报警输出	NO	1201H~1104H	44609~44612		
一级菜单(参看表	5-1)				
Lock (Lock)	NO	0000H	40001		
T (b)	NO	0001H	40002		
BAUD (bAud)	NO	0004H	40005		
第1路参数(参看	表 5-1 二级菜单)				
Sn1~ psl1	-	0005H~0012H	40006~40019		
第2路参数(参看	表 5-1 二级菜单)				
Sn2~ psl2	-	0013H~0020H	40020~40033		
第3路参数(参看	表 5-1 二级菜单)		•		
Sn3~ psl3	-	0021H~002EH	40034~40047		
第4路参数(参看	表 5-1 二级菜单)				
Sn4~ psl4	-	002FH~003CH	40048~40061		

4、注意说明:

- 1). 上位机对仪表写数据的程序部分应按仪表的规格,加入参数限幅功能,以防超范围的数据写入仪表,使其不能正常工作,各参数代码及设定范围见"表 5-1"。
- 2). 上位机发读或写指令的间隔时间应大于或等于 0.2 秒, 太短仪表可能来不及应答。
- 3). 仪表发送的都是整型数字没有浮点数,编上位机程序时应根据需要设置。
- 4). 测量值为 32767 (7FFFH) 表示 HH (超上量程), 为 32512 (7F00H) 表示 LL (超下量程)。
- 5). 除了 CRC 校验字节低位在前外, 其它所有双字节均高位在前, 低位在后(电脑上的计算器进制之间换算就是高位在前的)。

5、通信常见问题:

- 1). 仪表未对上位机读写指令响应?
 - . 仪表通信地址 ADDR 是否正确, CRC 校验码是否算正确, 指令格式是否正确
 - . 仪表限制每条指令只能读写一个寄存器,不允许连读或连写寄存器
 - . 如果从站有多台仪表,每次指令间隔时间是否大于 300ms
- 2). PLC(如西门子),触摸屏(如台达),组态软件(如组态王)怎样同仪表通信? 绝大部份的 PLC,触摸屏,组态软件都有 MODBUS-RTU 库,无需用户编写 MODBUS 指令。具体操作如下:
 - .配置端口参数(8个数据位,1个停止位,无校验位),超时时间(300ms),重试次数(>2次)
 - . 向组态软件输入仪表通信地址,寄存器地址,数据格式(16进制有符号数)及读取个数(每次读一个寄存器)
- 6. 带 MODBUS 协议的 PLC 触摸屏与仪表通信配置说明,请扫以下二维码或输入网址打开:

MODUBS-RTU 配置

M址 http://tempinst.com/servicesread.asp?id=50

7、CRC 校验算法子程序 C++:

```
void CRC16_S(byte[] data, int len)
          byte CRC16Lo;
          byte CRC16Hi; //CRC寄存器
          byte CL; byte CH; //多项式码&HA001
          byte SaveHi; byte SaveLo;
          int Flag;
          CRC16Lo = 0xFF;
          CRC16Hi = 0xFF;
          CL = 0x01;
          CH = 0xA0;
          for (int i = 0; i < 1en; i++)
              CRC16Lo = (byte)(CRC16Lo ^ data[i]); //每一个数据与CRC寄存器进行异或
              for (Flag = 0; Flag \langle = 7; Flag++ \rangle
                 SaveHi = CRC16Hi;
                 SaveLo = CRC16Lo;
                 CRC16Hi = (byte)(CRC16Hi >> 1); //高位右移一位
                  CRC16Lo = (byte) (CRC16Lo >> 1);
                                                  //低位右移一位
                 if ((SaveHi & 0x01) == 0x01) //如果高位字节最后一位为1
                     CRC16Lo = (byte)(CRC16Lo | 0x80); //则低位字节右移后前面补1
                 }
                              //否则自动补0
                 if ((SaveLo & 0x01) == 0x01) //如果LSB为1,则与多项式码进行异或
                     CRC16Hi = (byte) (CRC16Hi ^ CH);
                     CRC16Lo = (byte)(CRC16Lo ^ CL);
                 }
              }
          }
          //如果是modbus协议的话,应该是第一位是低位,第二位是高位
          data[len++] = CRC16Lo;
                                   //CRC低位
          data[1en] = CRC16Hi;
                                 //CRC 高位
       }
```

附 5: 仪表选型手册:

规格	万能输入八路温控仪选型手册						
型号	KC						
尺寸	160×80mm 开孔尺寸:152×76mm	М					
通道数	8 路 X						
报警继电器	无报警						
	每路 1 个报警继电器			1			
输入类型	热电偶: K, E,J, R, S, T,WR25,N 热电阻: Pt100, Cu50 W						
	线性电压: 0 - 5V, 1 - 5V 或 线性电流: 0 - 10mA, 4 t- 20mA DC A						
	热电偶、热电阻 NTC,KTY 和模拟量信号(每路需指定输入类型) M						
主控输出	继电器输出						
	通断电压,调节固态继电器					G	
供电电源	100 to 240V AC						
辅助功能	RS-485(MODBUS-RTU)					 RS	
	RS-232(MODBUS-RTU)						RX